Controlling Thermal Conductivity of Alloys via Atomic Ordering
نویسندگان
چکیده
Many random substitutional solid solutions (alloys) will display a tendency to atomically order given the appropriate kinetic and thermodynamic conditions. Such order–disorder transitions will result in major crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. Consequently, phonon behavior in these alloys will vary greatly depending on the type and degree of ordering achieved. To investigate these phenomena, the role of the order–disorder transition on phononic transport properties of Lennard–Jones type binary alloys is explored via nonequilibrium molecular dynamics simulations. Particular attention is paid to regimes in which the alloy is only partially ordered. It is shown that by varying the degree of ordering, the thermal conductivity of a binary alloy of fixed composition can be tuned across an order of magnitude at 10% of the melt temperature, and by a factor of three at 40% of the melt temperature. [DOI: 10.1115/1.4004843]
منابع مشابه
Reducing thermal conductivity of binary alloys below the alloy limit via chemical ordering.
Substitutional solid solutions that exist in both ordered and disordered states will exhibit markedly different physical properties depending on their exact crystallographic configuration. Many random substitutional solid solutions (alloys) will display a tendency to order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions will result in major crystallog...
متن کاملRole of Chemical Ordering on Phononic Transport in Binary Alloys
Many random substitutional solid solutions (alloys) will display a tendency to chemically order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions will result in major crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. Consequently, phonon behavior in these alloys will vary greatly depen...
متن کاملEffect of long- and short-range order on SiGe alloy thermal conductivity: Molecular dynamics simulation
We report the role of longand short-range order on the thermal conductivity and mode relaxation times of a model Si0.5Ge0.5 alloy using molecular dynamics simulation. All interactions used the Stillinger-Weber potential and the Si and Ge atoms differed only by their mass. The simulated alloys were generated using a Monte Carlo approach to decouple the short-range order from the long-range order...
متن کاملThermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors.
Atomic substitution in alloys can efficiently scatter phonons, thereby reducing the thermal conductivity in crystalline solids to the "alloy limit." Using In0.53Ga0.47As containing ErAs nanoparticles, we demonstrate thermal conductivity reduction by almost a factor of 2 below the alloy limit and a corresponding increase in the thermoelectric figure of merit by a factor of 2. A theoretical model...
متن کاملMedeA: Atomistic Simulations for Designing and Testing Materials for Micro/Nano Electronics Systems
Results of atomic-scale simulations are presented including thermal conductivity, elastic moduli, diffusion, and adhesion. This type of simulations is most conveniently performed with the MedeA computational environment, which comprises experimental structure databases together with building tools to construct models of complex solids, surfaces, and interfaces for both crystalline and amorphous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011